Anterior Cervical Plating - Does It Cause Adjacent Segment Changes?
Raj D. Rao, MD, Mei Wang, PhD, Thomas J. Perlewitz, MD, Linda M. McGrady, BS, Narayan Yoganandan, PhD (Milwaukee, WI)

• (a – Department of Orthopaedic Surgery, Medical College of Wisconsin)

INTRODUCTION: The results of a Smith and Robinson fusion for cervical radiculopathy are generally excellent. Long-term follow up, however, does show recurrent symptoms in one third of patients undergoing the procedure, necessitating surgery in many of these patients at adjacent levels. Some authors consider the adjacent segment changes a consequence of the initial fusion, while others feel that these changes are a result of progression of the natural degenerative process. The rationale for plate supplementation following anterior cervical discectomy and fusion is to provide immediate segmental stability for earlier mobilization, to prevent graft extrusion and collapse, and to improve fusion rates because of the increased local rigidity. Whether the addition of instrumentation to an anterior cervical fusion results in accelerated degenerative changes at adjacent segments is unclear. The aim of this study is to determine whether plate supplementation affects mechanical behavior at adjacent segments. We do this by comparing (1) kinematic behavior, and (2) the central and peripheral intradiscal stresses of adjacent segments following anterior cervical discectomy and fusion, with and without anterior plate supplementation.

METHODS: Five fresh cadaveric cervical spine specimens (C2-T1) were potted in dental cement exposing from mid-vertebral body of the C3 to that of C7. A six-axis load cell was mounted in series under the inferior vertebra to verify the applied moments and forces. Two disc-shaped miniature pressure sensors (1.5mm diameter and 0.3mm thickness) were implanted within the intervertebral discs of C4-C5 and C6-C7, respectively. One sensor was located centrally in the region of the nucleus pulposus, and the other was situated peripherally in the lateral annulus fibrosus. Flexion, extension, lateral bending, and torsion loads with a maximum magnitude of 2.5 Nm were applied to the cranial end of the construct in five steps. Unconstrained three-dimensional range of motion at C5-C6, the level above, and the level below was
recorded with a three-camera motion analysis system (VICON 370). Each specimen was tested in three stages: 1) Intact; 2) Anterior discectomy and grafting at C5-C6 using allograft bone plug; 3) Application of the anterior cervical plate. The segmental motion of the intact spine, discectomy and grafting, and plating were compared. The peak pressure sensor outputs were normalized with respect to the intact spine, and changes in annulus stress at C6-C7 and C4-C5 with graft alone and with supplemental plate were compared. Statistical analysis included one-way ANOVA and post-hoc t-test.

RESULTS: Range of Motion: At the surgical level, reduction following discectomy and grafting was observed in all loading directions, ranging from 53-75%. All were statistically significant except in extension. Further reduction after plating was found in flexion (40%, p<0.02) and lateral bending (26%, p<0.01). However, at the levels above and below the surgical level, the range of motion remained virtually unchanged following the two procedures except a slight increase in both levels in flexion after discectomy and grafting and again after plating. None of the increases was statistically significant. Intradiscal Stress: For all loading directions, the general trend was that greater intradiscal stresses were generated at the level above the surgical level compared to the level below. There were no statistically viable changes in central and peripheral stresses at each of these levels from intact to discectomy and grafting, and to subsequent plating.

CONCLUSIONS: The issue of biomechanical changes at the levels adjacent to a spinal fusion has been investigated in the lumbar region in several studies. Increases in both kinematics and intradiscal pressure at adjacent segments following instrumented fusion have been reported. These findings indicate a fusion-initiated biomechanical causative factor in the accelerated adjacent disc degeneration observed clinically. Very few biomechanical studies have been conducted in the cervical spine despite the belief that similar phenomena exist in instrumented cervical fusion. This is the first experimental study to address the changes in kinematics as well as intradiscal stresses at adjacent segments following cervical fusion and plating. Our results indicate that the cervical spine may not behave in the same manner as the lumbar spine. The kinematics at adjacent levels are not affected by discectomy and grafting, nor the supplementary plating. Intradiscal stress measurements in the cervical spine are sensitive to the degenerative conditions of the disc, which may account for the large variations in our results. This leads us to believe that adjacent
segment degenerative changes are more likely to be attributed to natural progression of the spondyloitic process, rather than a consequence of biomechanical alteration from grafting or plating.

- If noted, the author indicates something of value received. The codes are identified as: a – research or institutional support, b – miscellaneous funding, c – royalties, d – stock option, e – consultant or employee. For full information, refer to inside back cover.