Timing of Intervention in Acute Spinal Cord Injury

Central Cord Syndrome

Louis G. Jenis, MD
Chief, Spine Surgery
Department of Orthopaedic Surgery
Massachusetts General Hospital
Assistant Professor Orthopaedic Surgery
Harvard School of Medicine
Boston, MA
Acute Spinal Cord Injury

- **Incomplete SCI**
 - Heterogeneous population of patients
 - Varying mechanisms of injury
 - Central cord syndrome – most common
 - Clinical presentation
 - Younger patient - significant traumatic injury
 - Absence of instability / acute disc herniation
 - Elderly with preexisting stenotic spinal canal
 - Controversial subject
 - Studies tend to group these together
 - Timing of surgical intervention
 - Whether to treat with surgery
Central cord syndrome

- Hyperextension mechanism
 - Mechanical compression – contusion
 - Somatotopic organization of corticospinal tracts
 - Central gray matter affected more than peripheral white matter tracts
 - Vascular injury
 - anterior spinal artery leading to ischemia
 - Intraparenchymal hematoma
 - Studies lacking

- Schneider 1954
 - Disproportionate UE > LE weakness
 - “Burning hands” syndrome
 - Bladder dysfunction
 - Sensory loss below the level of injury
Acute Spinal Cord Injury

- **Central cord syndrome**
 - Goals of Rx
 - Spare spinal cord from further injury
 - Enhance recovery of function
 - Reduce “collateral” injury
Indications for Surgical Intervention

- **Central cord syndrome**
 - Age / Pathogenesis of CCS?
 - Younger patient - traumatic injury or older patient with worsening = surgery
 - Older patient with CCS – no instability - improving = conservative treatment
 - Older patient with CCS - no instability – stable significant neurologic deficit = ?
Indications for Surgical Intervention

- Central cord syndrome
 - Age / Pathogenesis of CCS?
 - Younger patient - traumatic injury or older patient with worsening = surgery
 - Older patient with CCS – no instability - improving = conservative treatment
 - Older patient with CCS - no instability – stable significant neurologic deficit = ?
Indications for Surgical Intervention

- Central cord syndrome
 - Age / Pathogenesis of CCS?
 - Younger patient - traumatic injury or older patient with worsening = surgery
 - Older patient with CCS – no instability - improving = conservative treatment
 - Older patient with CCS - no instability – stable significant neurologic deficit = ?
Indications for Surgical Intervention

- Central cord syndrome
 - Age / Pathogenesis of CCS?
 - Younger patient - traumatic injury or older patient with worsening = surgery
 - Older patient with CCS – no instability - improving = conservative treatment
 - Older patient with CCS - no instability – stable significant neurologic deficit = ?
Timing of Surgical Intervention

- **Central cord syndrome**
 - Older patient with CCS - no instability – stable significant neurologic deficit = ?
 - “Delayed Approach or Waiting” - “Optimization”
 - Does waiting correlate with doing nothing?
 - Is there one best approach for all types of CCS?
 - Is there a “cut off” time?
 - What does the evidence suggest?
Timing of Surgical Intervention

“Timing window”

- Several components play a role in recovery from neurologic injury
 - Early surgery intervention
 - Preclinical / animal models
 - Meta-analysis - 37 / 272 studies\(^1\)
 - 21 adequate data
 - 79 experiments - 873 animals
 - Degree / duration of compression – negative outcome
 - Overall effect size in neurologic improvement -35.1% after earlier decompression
 - Human clinical studies
 - Central cord syndrome – data is limited – anecdotal\(^2\)

\(^1\)Batchelor, et al, Plos One 8:e72659, 2013
\(^2\)Dahdelah, et al Neurosurg Focus 35:E6:, 2013
Timing of Surgical Intervention

- Evidence
 - Surgical Timing in Spinal Cord Injury Study (STASCIS)
 - Multicenter, prospective – adult patients 16-80
 - 2002-2009
 - 313 / 470 patients
 - 131 / 182 “early” < 24 hours (14.2 +/- 5.4)
 - 91 / 131 “late” > 24 hours (48.3 +/- 29.3)
 - Surgical decision-making:
 - Time at arrival
 - Time to diagnosis
 - Surgeon discretion - timing to OR and technique
 - Primary outcome - 6 month change in ASIA

Fehlings, et al, Plos One 7;e32037, 2012
Timing of Surgical Intervention

- Evidence
 - Surgical Timing in Spinal Cord Injury Study (STASCIS)

Table 2. Patient Demographics and Injury Characteristics.

<table>
<thead>
<tr>
<th>characteristics</th>
<th>Overall N = 313</th>
<th>Early surgery N = 182</th>
<th>Late Surgery N = 131</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean age ± SD</td>
<td></td>
<td></td>
<td></td>
<td>P<0.01</td>
</tr>
<tr>
<td></td>
<td>47.4±16.9</td>
<td>45.0±17.2</td>
<td>50.7±15.9</td>
<td></td>
</tr>
<tr>
<td>Gender n(%)</td>
<td></td>
<td></td>
<td></td>
<td>p>0.05</td>
</tr>
<tr>
<td>Male</td>
<td>236 (75.4%)</td>
<td>140 (76.9%)</td>
<td>96 (73.3%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>77 (24.6%)</td>
<td>42 (23.1%)</td>
<td>35 (26.7%)</td>
<td></td>
</tr>
<tr>
<td>Etiology</td>
<td></td>
<td></td>
<td></td>
<td>p>0.05</td>
</tr>
<tr>
<td>Motor Vehicle Accident</td>
<td>119 (38.0%)</td>
<td>76 (41.8%)</td>
<td>43 (32.8%)</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>121 (38.7%)</td>
<td>64 (35.1%)</td>
<td>57 (43.5%)</td>
<td></td>
</tr>
<tr>
<td>assault – blunt</td>
<td>13 (4.2%)</td>
<td>8 (4.4%)</td>
<td>5 (3.8%)</td>
<td></td>
</tr>
<tr>
<td>Sports</td>
<td>3 (9.6%)</td>
<td>16 (8.8%)</td>
<td>12 (9.2%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>3 (9.6%)</td>
<td>18 (9.9%)</td>
<td>14 (10.7%)</td>
<td></td>
</tr>
<tr>
<td>Baseline ASIA Impairment Scale grade</td>
<td></td>
<td></td>
<td></td>
<td>P<0.01</td>
</tr>
<tr>
<td>A</td>
<td>101(32.3%)</td>
<td>65 (35.7%)</td>
<td>36 (27.5%)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>54 (17.3%)</td>
<td>40 (22.0%)</td>
<td>14 (10.7%)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>66 (21.1%)</td>
<td>32 (17.6%)</td>
<td>34 (26.0%)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>92 (29.4%)</td>
<td>45 (24.7%)</td>
<td>47 (35.9%)</td>
<td></td>
</tr>
</tbody>
</table>

Fehlings, et al, Plos One 7;e32037,2012
Timing of Surgical Intervention

- **Evidence**
 - **STASCIS**
 - Primary outcome - 6 month change in ASIA

Fehlings, et al, Plos One 7;e32037,2012
Timing of Surgical Intervention

- Evidence
 - STASCIS
 - Adverse events

Table 7. Inpatient Postoperative Complications.

<table>
<thead>
<tr>
<th>Complication</th>
<th>Total Population</th>
<th>Early Surgery</th>
<th>Late Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiopulmonary</td>
<td>66 (68.0%)</td>
<td>32 (66.7%)</td>
<td>34 (69.4%)</td>
</tr>
<tr>
<td>Construct Failure Requiring Surgery</td>
<td>4 (4.1%)</td>
<td>3 (6.3%)</td>
<td>1 (2.0%)</td>
</tr>
<tr>
<td>Deep Wound Infection</td>
<td>2 (2.1%)</td>
<td>0</td>
<td>2 (4.1%)</td>
</tr>
<tr>
<td>Neurologic Deterioration</td>
<td>5 (5.2%)</td>
<td>4 (8.3%)</td>
<td>1 (2.0%)</td>
</tr>
<tr>
<td>Pulmonary Embolism</td>
<td>4 (4.1%)</td>
<td>2 (4.2%)</td>
<td>2 (4.1%)</td>
</tr>
<tr>
<td>Systemic Infection</td>
<td>14 (14.4%)</td>
<td>6 (12.5%)</td>
<td>8 (16.3%)</td>
</tr>
<tr>
<td>Wound Dehiscence</td>
<td>1 (1.0%)</td>
<td>1 (2.1%)</td>
<td>1 (2.0%)</td>
</tr>
<tr>
<td>Totals</td>
<td>97</td>
<td>48</td>
<td>49</td>
</tr>
</tbody>
</table>

Fehlings, et al, Plos One 7;e32037,2012
Timing of Surgical Intervention

- Evidence
 - STASCIS
 - Considerations:
 - Type of incomplete SCI?
 - 27% lost to follow-up
 - 47 early vs. 39 late cohort
 - Early cohort - younger - less co-morbidity
 - Surgeon discretion
 - ASIA A/B – early n=105 vs. late n=50
 - Powered for one vs. two grade change?
 - NO difference was noted between early vs. late when one grade considered
 - ASIA D patients?
 - ASIA A, B, C – 97 < 24 vs. 59 > 24 hours (p=0.071)

Van Middendorp TSJ12:540542, 2012
Timing of Surgical Intervention

Evidence

- Older patient with CCS - no instability – stable significant neurologic deficit = ?
 - Meta-analysis – 1940 - 2012
 - 5 / 1653 publications on timing of surgery in acute CCS
 - Retrospective only
 - <12 month follow-up – early surgery slightly improved motor scores
 - > 12 month follow-up - no difference in clinical outcome

<table>
<thead>
<tr>
<th>Source</th>
<th>No. of patients</th>
<th>Mean age at injury, y (range)</th>
<th>Disease entity</th>
<th>Early surgery (d)</th>
<th>Mean follow-up, mo (range)</th>
<th>Outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenahan et al</td>
<td>73</td>
<td>57.7 (21.8-86.7)</td>
<td>Spondylosis (73)</td>
<td><1</td>
<td>12</td>
<td>ASIA motor score, functional independence measure, SF 36, bladder management status, walking ability</td>
</tr>
<tr>
<td>Quest et al</td>
<td>50</td>
<td>45 (14-77)</td>
<td>Spondylosis (24), acute disk herniation (16), fracture and/or dislocation (10)</td>
<td><1</td>
<td>36 (13-48)</td>
<td>PSI/MFS, length of ICU stay, length of hospital stay</td>
</tr>
<tr>
<td>Chen et al</td>
<td>49</td>
<td>55.9 (22-76)</td>
<td>Spondylosis (27), acute disk herniation (13), fracture and/or dislocation (9)</td>
<td><=4</td>
<td>56 (25-84)</td>
<td>ASIA motor score, WSCI, SF 36, bladder management status, spasticity, neurogenic pain, satisfaction</td>
</tr>
<tr>
<td>Stevens et al</td>
<td>67</td>
<td>34 (16-82)</td>
<td>Not specified</td>
<td><1</td>
<td>32 (1-210)</td>
<td>Proneal grading, length of the ICU stay, length of hospital stay, complication rates</td>
</tr>
<tr>
<td>Yamazaki et al</td>
<td>23</td>
<td>59.0 ± 11.9</td>
<td>Spondylosis (21), acute disk herniation (2)</td>
<td><=54</td>
<td>Mean 41.3 ± 25.9</td>
<td>NDA score</td>
</tr>
</tbody>
</table>

Timing of Surgical Intervention

Evidence

- Older patient with CCS - no instability – stable significant neurologic deficit = ?
 - Meta-analysis – 1966 -2013 - 16 / 77 / 1675 publications
 - Type of treatment, timing, prognostic factors
 - 6 retrospective studies on timing
Timing of Surgical Intervention

- Evidence
 - Older patient with CCS - no instability – stable significant neurologic deficit = ?
 - ACS National Trauma Bank Research Data Set
 - 2011-2012- ICD9 - 1060 patients
 - Multivariate logical regression model
 - All treated during index hospitalization
 - “Is early surgery safe?”

<table>
<thead>
<tr>
<th>TABLE 1. Patient Demographic and Comorbidities</th>
<th>(n = 1060)</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean = 55.6), yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–39</td>
<td>133</td>
<td>12.55</td>
<td></td>
</tr>
<tr>
<td>40–49</td>
<td>180</td>
<td>16.98</td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>201</td>
<td>26.51</td>
<td></td>
</tr>
<tr>
<td>60–69</td>
<td>249</td>
<td>23.49</td>
<td></td>
</tr>
<tr>
<td>70–79</td>
<td>144</td>
<td>13.58</td>
<td></td>
</tr>
<tr>
<td>80 +</td>
<td>73</td>
<td>6.89</td>
<td></td>
</tr>
</tbody>
</table>

Comorbidities*

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>413</td>
<td>38.96</td>
</tr>
<tr>
<td>Alcoholism</td>
<td>235</td>
<td>22.17</td>
</tr>
<tr>
<td>Diabetes</td>
<td>197</td>
<td>18.58</td>
</tr>
<tr>
<td>Respiratory disease</td>
<td>85</td>
<td>8.11</td>
</tr>
<tr>
<td>Obesity</td>
<td>49</td>
<td>4.62</td>
</tr>
</tbody>
</table>

Timing of Surgical Intervention

- Evidence
 - Central cord syndrome
 - ACS National Trauma Bank Research Data Set
 - 19% decrease risk of mortality with each 24 hour period of time up to day 7

<table>
<thead>
<tr>
<th>Outcome: death</th>
<th>Adjusted OR* (95% Confidence Interval)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to surgery (d)</td>
<td>0.81 (0.67–0.99)</td>
<td>0.039</td>
</tr>
</tbody>
</table>

$P = 0.039$

Adjusted OR (95% Confidence Interval)
Timing of Surgical Intervention

- Evidence
 - Central cord syndrome
 - ACS National Trauma Bank Research Data Set
 - SAEs - not effected by delayed intervention
 - Increased CCI - risk of death / SAE / MAE

<table>
<thead>
<tr>
<th>Outcome: death</th>
<th>Adjusted OR* (95% Confidence Interval)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to surgery (d)</td>
<td>0.81 (0.67–0.99)</td>
<td>0.039</td>
</tr>
<tr>
<td>Charlson Comorbidity Index</td>
<td>1.45 (1.24–1.71)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Injury severity score</td>
<td>1.03 (0.99–1.06)</td>
<td>0.175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome: SAEs</th>
<th>Adjusted OR* (95% Confidence Interval)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to surgery (d)</td>
<td>1.03 (1.00–1.07)</td>
<td>0.085</td>
</tr>
<tr>
<td>Charlson Comorbidity Index</td>
<td>1.25 (1.13–1.38)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Injury severity score</td>
<td>1.04 (1.02–1.06)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome: minor adverse events</th>
<th>Adjusted OR* (95% Confidence Interval)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to surgery (d)</td>
<td>1.07 (1.03–1.10)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Charlson Comorbidity Index</td>
<td>1.12 (1.02–1.22)</td>
<td>0.012</td>
</tr>
<tr>
<td>Injury severity score</td>
<td>1.04 (1.02–1.06)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Timing of Surgical Intervention

- **Central cord syndrome**
 - Effect of T2 hyperintensity on recovery
 - Retrospective study – ASIA motor score – 7 days
 - Surgery < 24 hours vs. within index hospitalization
 - Presence of T2 signal
 - More significant neurologic injury upon presentation
 - No effect motor score within first week

Timing of Surgical Intervention

- **Central cord syndrome**
 - Older patient with CCS - no instability – stable significant neurologic deficit = ?
 - Initial management
 - Cervical orthosis
 - Respiratory protection
 - Hemodynamic stability
 - Vasopressors - Mean arterial pressure -80-90
 - Assessment – neurologic status / function
 - Patients who are medically optimized
 - eligible for “early” surgery - within first few days
 - Surgical indications?
 - Surgical intervention:
 - Safe time
 - Team prepared
 - Anesthesia prepared
Thank you